Package: noisySBM 0.1.4
noisySBM: Noisy Stochastic Block Mode: Graph Inference by Multiple Testing
Variational Expectation-Maximization algorithm to fit the noisy stochastic block model to an observed dense graph and to perform a node clustering. Moreover, a graph inference procedure to recover the underlying binary graph. This procedure comes with a control of the false discovery rate. The method is described in the article "Powerful graph inference with false discovery rate control" by T. Rebafka, E. Roquain, F. Villers (2020) <arxiv:1907.10176>.
Authors:
noisySBM_0.1.4.tar.gz
noisySBM_0.1.4.zip(r-4.5)noisySBM_0.1.4.zip(r-4.4)noisySBM_0.1.4.zip(r-4.3)
noisySBM_0.1.4.tgz(r-4.4-any)noisySBM_0.1.4.tgz(r-4.3-any)
noisySBM_0.1.4.tar.gz(r-4.5-noble)noisySBM_0.1.4.tar.gz(r-4.4-noble)
noisySBM_0.1.4.tgz(r-4.4-emscripten)noisySBM_0.1.4.tgz(r-4.3-emscripten)
noisySBM.pdf |noisySBM.html✨
noisySBM/json (API)
# Install 'noisySBM' in R: |
install.packages('noisySBM', repos = c('https://tabea17.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 4 years agofrom:2ae46a0440. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 25 2024 |
R-4.5-win | OK | Oct 25 2024 |
R-4.5-linux | OK | Oct 25 2024 |
R-4.4-win | OK | Oct 25 2024 |
R-4.4-mac | OK | Oct 25 2024 |
R-4.3-win | OK | Oct 25 2024 |
R-4.3-mac | OK | Oct 25 2024 |
Exports:ARIfitNSBMgetBestQgraphInferenceplotGraphsplotICLrnsbm
Dependencies:clicolorspacefansifarverggplot2gluegtablegtoolsisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithr