Package: graphclust 1.3

graphclust: Hierarchical Graph Clustering for a Collection of Networks

Graph clustering using an agglomerative algorithm to maximize the integrated classification likelihood criterion and a mixture of stochastic block models. The method is described in the article "Model-based clustering of multiple networks with a hierarchical algorithm" by T. Rebafka (2022) <arxiv:2211.02314>.

Authors:Tabea Rebafka [aut, cre]

graphclust_1.3.tar.gz
graphclust_1.3.zip(r-4.5)graphclust_1.3.zip(r-4.4)graphclust_1.3.zip(r-4.3)
graphclust_1.3.tgz(r-4.4-any)graphclust_1.3.tgz(r-4.3-any)
graphclust_1.3.tar.gz(r-4.5-noble)graphclust_1.3.tar.gz(r-4.4-noble)
graphclust_1.3.tgz(r-4.4-emscripten)graphclust_1.3.tgz(r-4.3-emscripten)
graphclust.pdf |graphclust.html
graphclust/json (API)

# Install 'graphclust' in R:
install.packages('graphclust', repos = c('https://tabea17.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.43 score 27 scripts 215 downloads 18 exports 19 dependencies

Last updated 1 years agofrom:e813e9642e. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 22 2024
R-4.5-winOKOct 22 2024
R-4.5-linuxOKOct 22 2024
R-4.4-winOKOct 22 2024
R-4.4-macOKOct 22 2024
R-4.3-winOKOct 22 2024
R-4.3-macOKOct 22 2024

Exports:ARIdegreeSortfitSBMcollectionfitSimpleSBMgraphClusteringgraphMomentsClusteringgraphonL2normgraphonSpectralClusteringmetagraphmomentspermutParamplotDendrogramrCollectSBMrMixSBMrsbmsampleDPAsampleDPAMixturesbmNorm

Dependencies:blockmodelsclasscliclustercpp11digestglueigraphlatticelifecyclemagrittrMASSMatrixpkgconfigRcppRcppArmadillorlangsClustvctrs