Package: graphclust 1.3
graphclust: Hierarchical Graph Clustering for a Collection of Networks
Graph clustering using an agglomerative algorithm to maximize the integrated classification likelihood criterion and a mixture of stochastic block models. The method is described in the article "Model-based clustering of multiple networks with a hierarchical algorithm" by T. Rebafka (2022) <arxiv:2211.02314>.
Authors:
graphclust_1.3.tar.gz
graphclust_1.3.zip(r-4.5)graphclust_1.3.zip(r-4.4)graphclust_1.3.zip(r-4.3)
graphclust_1.3.tgz(r-4.4-any)graphclust_1.3.tgz(r-4.3-any)
graphclust_1.3.tar.gz(r-4.5-noble)graphclust_1.3.tar.gz(r-4.4-noble)
graphclust_1.3.tgz(r-4.4-emscripten)graphclust_1.3.tgz(r-4.3-emscripten)
graphclust.pdf |graphclust.html✨
graphclust/json (API)
# Install 'graphclust' in R: |
install.packages('graphclust', repos = c('https://tabea17.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 1 years agofrom:e813e9642e. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 22 2024 |
R-4.5-win | OK | Oct 22 2024 |
R-4.5-linux | OK | Oct 22 2024 |
R-4.4-win | OK | Oct 22 2024 |
R-4.4-mac | OK | Oct 22 2024 |
R-4.3-win | OK | Oct 22 2024 |
R-4.3-mac | OK | Oct 22 2024 |
Exports:ARIdegreeSortfitSBMcollectionfitSimpleSBMgraphClusteringgraphMomentsClusteringgraphonL2normgraphonSpectralClusteringmetagraphmomentspermutParamplotDendrogramrCollectSBMrMixSBMrsbmsampleDPAsampleDPAMixturesbmNorm
Dependencies:blockmodelsclasscliclustercpp11digestglueigraphlatticelifecyclemagrittrMASSMatrixpkgconfigRcppRcppArmadillorlangsClustvctrs